Integrating Recent MLP Feature Extraction Techniques into TRAP Architecture
نویسندگان
چکیده
This paper is focused on the incorporation of recent techniques for multi-layer perceptron (MLP) based feature extraction in Temporal Pattern (TRAP) and Hidden Activation TRAP (HATS) feature extraction scheme. The TRAP scheme has been origin of various MLP-based features some of which are now indivisible part of state-of-the-art LVCSR systems. The modifications which brought most improvement – sub-phoneme targets and Bottle-Neck technique – are introduced into original TRAP scheme. Introduction of sub-phoneme targets uncovered the hidden danger of having too many classes in TRAP/HATS scheme. On the other hand, Bottle-Neck technique improved the TRAP/HATS scheme so its competitive with other approaches.
منابع مشابه
Improved MLP structures for data-driven feature extraction for ASR
In this paper, we present our recent progress on multi-layer perceptron (MLP) based data-driven feature extraction using improved MLP structures. Four-layer MLPs are used in this study. Different signal processing methods are applied before the input layer of the MLP. We show that the first hidden layer of a four-layer MLP is able to detect some basic patterns from the time-frequency plane. KLT...
متن کاملNEUROSVM: An Architecture to Reduce the Effect of the Choice of Kernel on the Performance of SVM
In this paper we propose a new multilayer classifier architecture. The proposed hybrid architecture has two cascaded modules: feature extraction module and classification module. In the feature extraction module we use the multilayered perceptron (MLP) neural networks, although other tools such as radial basis function (RBF) networks can be used. In the classification module we use support vect...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملA Novel Architecture for Detecting Phishing Webpages using Cost-based Feature Selection
Phishing is one of the luring techniques used to exploit personal information. A phishing webpage detection system (PWDS) extracts features to determine whether it is a phishing webpage or not. Selecting appropriate features improves the performance of PWDS. Performance criteria are detection accuracy and system response time. The major time consumed by PWDS arises from feature extraction that ...
متن کاملNeural network based optimal feature extraction for ASR
The procedure of calculating Mel Frequency based Cepstral Coefficients (MFCC) is shown to resemble a three layer Multilayer Perceptron (MLP) like structure. Such an MLP is employed as a preprocessor in a hybrid HMM-MLP system, and the possibility of optimizing the whole system as a single entity, with respect to a suitable criterion, is pointed out. This system, together with the Maximum Mutual...
متن کامل